An intensity ratio of interlocking loops determines circadian period length
نویسندگان
چکیده
Circadian clocks allow organisms to orchestrate the daily rhythms in physiology and behaviors, and disruption of circadian rhythmicity can profoundly affect fitness. The mammalian circadian oscillator consists of a negative primary feedback loop and is associated with some 'auxiliary' loops. This raises the questions of how these interlocking loops coordinate to regulate the period and maintain its robustness. Here, we focused on the REV-ERBα/Cry1 auxiliary loop, consisting of Rev-Erbα/ROR-binding elements (RORE) mediated Cry1 transcription, coordinates with the negative primary feedback loop to modulate the mammalian circadian period. The silicon simulation revealed an unexpected rule: the intensity ratio of the primary loop to the auxiliary loop is inversely related to the period length, even when post-translational feedback is fixed. Then we measured the mRNA levels from two loops in 10-mutant mice and observed the similar monotonic relationship. Additionally, our simulation and the experimental results in human osteosarcoma cells suggest that a coupling effect between the numerator and denominator of this intensity ratio ensures the robustness of circadian period and, therefore, provides an efficient means of correcting circadian disorders. This ratio rule highlights the contribution of the transcriptional architecture to the period dynamics and might be helpful in the construction of synthetic oscillators.
منابع مشابه
Dual roles of FBXL3 in the mammalian circadian feedback loops are important for period determination and robustness of the clock.
The mammalian circadian clock is composed of interlocking feedback loops. Cryptochrome is a central component in the core negative feedback loop, whereas Rev-Erbα, a member of the nuclear receptor family, is an essential component of the interlocking loop. To understand the roles of different clock genes, we conducted a genetic interaction screen by generating single- and double-mutant mice. We...
متن کاملPER/TIM-mediated amplification, gene dosage effects and temperature compensation in an interlocking-feedback loop model of the Drosophila circadian clock.
We have analysed a first-order kinetic representation of a interlocking-feedback loop model for the Drosophila circadian clock. In this model, the transcription factor Drosophila CLOCK (dCLK) which activates the clock genes period (per) and timeless (tim) is subjected to positive and negative regulations by the proteins 'PAR Domain Protein 1' (PDP1) and VRILLE (VRI), whose transcription is acti...
متن کاملLIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock.
In Arabidopsis thaliana, central circadian clock genes constitute several feedback loops. These interlocking loops generate an ~24-h oscillation that enables plants to anticipate the daily diurnal environment. The identification of additional clock proteins can help dissect the complex nature of the circadian clock. Previously, LIGHT-REGULATED WD1 (LWD1) and LWD2 were identified as two clock pr...
متن کاملThe role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation.
A defining, yet poorly understood characteristic of the circadian clock is that it is buffered against changes in temperature such that the period length is relatively constant across a range of physiologically relevant temperatures. We describe here the role of PSEUDO RESPONSE REGULATOR7 (PRR7) and PRR9 in temperature compensation. The Arabidopsis thaliana circadian oscillator comprises a seri...
متن کاملMammalian Molecular Clocks
As a consequence of the Earth's rotation, almost all organisms experience day and night cycles within a 24-hr period. To adapt and synchronize biological rhythms to external daily cycles, organisms have evolved an internal time-keeping system. In mammals, the master circadian pacemaker residing in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus generates circadian rhythmicity and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 42 شماره
صفحات -
تاریخ انتشار 2014